diff options
| author | Remko Tronçon <git@el-tramo.be> | 2010-02-11 12:14:00 (GMT) | 
|---|---|---|
| committer | Remko Tronçon <git@el-tramo.be> | 2010-02-11 12:14:00 (GMT) | 
| commit | 0efa7c32aaf21a29b42b5926cc116007056843be (patch) | |
| tree | 882f663a5dd0e65694bf6077b71086dd77fd7ff8 /3rdParty/ZLib/src/trees.c | |
| parent | 1d20eabbc32274b491b4c2bedf73d19933d97bfd (diff) | |
| download | swift-0efa7c32aaf21a29b42b5926cc116007056843be.zip swift-0efa7c32aaf21a29b42b5926cc116007056843be.tar.bz2  | |
Moved some modules into separate git modules.
Diffstat (limited to '3rdParty/ZLib/src/trees.c')
| m--------- | 3rdParty/ZLib | 0 | ||||
| -rw-r--r-- | 3rdParty/ZLib/src/trees.c | 1219 | 
2 files changed, 0 insertions, 1219 deletions
diff --git a/3rdParty/ZLib b/3rdParty/ZLib new file mode 160000 +Subproject 9d043b1e27a5c7a55d9811b9509012046ad0bdb diff --git a/3rdParty/ZLib/src/trees.c b/3rdParty/ZLib/src/trees.c deleted file mode 100644 index 395e4e1..0000000 --- a/3rdParty/ZLib/src/trees.c +++ /dev/null @@ -1,1219 +0,0 @@ -/* trees.c -- output deflated data using Huffman coding - * Copyright (C) 1995-2005 Jean-loup Gailly - * For conditions of distribution and use, see copyright notice in zlib.h - */ - -/* - *  ALGORITHM - * - *      The "deflation" process uses several Huffman trees. The more - *      common source values are represented by shorter bit sequences. - * - *      Each code tree is stored in a compressed form which is itself - * a Huffman encoding of the lengths of all the code strings (in - * ascending order by source values).  The actual code strings are - * reconstructed from the lengths in the inflate process, as described - * in the deflate specification. - * - *  REFERENCES - * - *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". - *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc - * - *      Storer, James A. - *          Data Compression:  Methods and Theory, pp. 49-50. - *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. - * - *      Sedgewick, R. - *          Algorithms, p290. - *          Addison-Wesley, 1983. ISBN 0-201-06672-6. - */ - -/* @(#) $Id$ */ - -/* #define GEN_TREES_H */ - -#include "deflate.h" - -#ifdef DEBUG -#  include <ctype.h> -#endif - -/* =========================================================================== - * Constants - */ - -#define MAX_BL_BITS 7 -/* Bit length codes must not exceed MAX_BL_BITS bits */ - -#define END_BLOCK 256 -/* end of block literal code */ - -#define REP_3_6      16 -/* repeat previous bit length 3-6 times (2 bits of repeat count) */ - -#define REPZ_3_10    17 -/* repeat a zero length 3-10 times  (3 bits of repeat count) */ - -#define REPZ_11_138  18 -/* repeat a zero length 11-138 times  (7 bits of repeat count) */ - -local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ -   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; - -local const int extra_dbits[D_CODES] /* extra bits for each distance code */ -   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; - -local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ -   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; - -local const uch bl_order[BL_CODES] -   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; -/* The lengths of the bit length codes are sent in order of decreasing - * probability, to avoid transmitting the lengths for unused bit length codes. - */ - -#define Buf_size (8 * 2*sizeof(char)) -/* Number of bits used within bi_buf. (bi_buf might be implemented on - * more than 16 bits on some systems.) - */ - -/* =========================================================================== - * Local data. These are initialized only once. - */ - -#define DIST_CODE_LEN  512 /* see definition of array dist_code below */ - -#if defined(GEN_TREES_H) || !defined(STDC) -/* non ANSI compilers may not accept trees.h */ - -local ct_data static_ltree[L_CODES+2]; -/* The static literal tree. Since the bit lengths are imposed, there is no - * need for the L_CODES extra codes used during heap construction. However - * The codes 286 and 287 are needed to build a canonical tree (see _tr_init - * below). - */ - -local ct_data static_dtree[D_CODES]; -/* The static distance tree. (Actually a trivial tree since all codes use - * 5 bits.) - */ - -uch _dist_code[DIST_CODE_LEN]; -/* Distance codes. The first 256 values correspond to the distances - * 3 .. 258, the last 256 values correspond to the top 8 bits of - * the 15 bit distances. - */ - -uch _length_code[MAX_MATCH-MIN_MATCH+1]; -/* length code for each normalized match length (0 == MIN_MATCH) */ - -local int base_length[LENGTH_CODES]; -/* First normalized length for each code (0 = MIN_MATCH) */ - -local int base_dist[D_CODES]; -/* First normalized distance for each code (0 = distance of 1) */ - -#else -#  include "trees.h" -#endif /* GEN_TREES_H */ - -struct static_tree_desc_s { -    const ct_data *static_tree;  /* static tree or NULL */ -    const intf *extra_bits;      /* extra bits for each code or NULL */ -    int     extra_base;          /* base index for extra_bits */ -    int     elems;               /* max number of elements in the tree */ -    int     max_length;          /* max bit length for the codes */ -}; - -local static_tree_desc  static_l_desc = -{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; - -local static_tree_desc  static_d_desc = -{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; - -local static_tree_desc  static_bl_desc = -{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; - -/* =========================================================================== - * Local (static) routines in this file. - */ - -local void tr_static_init OF((void)); -local void init_block     OF((deflate_state *s)); -local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k)); -local void gen_bitlen     OF((deflate_state *s, tree_desc *desc)); -local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count)); -local void build_tree     OF((deflate_state *s, tree_desc *desc)); -local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code)); -local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code)); -local int  build_bl_tree  OF((deflate_state *s)); -local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, -                              int blcodes)); -local void compress_block OF((deflate_state *s, ct_data *ltree, -                              ct_data *dtree)); -local void set_data_type  OF((deflate_state *s)); -local unsigned bi_reverse OF((unsigned value, int length)); -local void bi_windup      OF((deflate_state *s)); -local void bi_flush       OF((deflate_state *s)); -local void copy_block     OF((deflate_state *s, charf *buf, unsigned len, -                              int header)); - -#ifdef GEN_TREES_H -local void gen_trees_header OF((void)); -#endif - -#ifndef DEBUG -#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) -   /* Send a code of the given tree. c and tree must not have side effects */ - -#else /* DEBUG */ -#  define send_code(s, c, tree) \ -     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ -       send_bits(s, tree[c].Code, tree[c].Len); } -#endif - -/* =========================================================================== - * Output a short LSB first on the stream. - * IN assertion: there is enough room in pendingBuf. - */ -#define put_short(s, w) { \ -    put_byte(s, (uch)((w) & 0xff)); \ -    put_byte(s, (uch)((ush)(w) >> 8)); \ -} - -/* =========================================================================== - * Send a value on a given number of bits. - * IN assertion: length <= 16 and value fits in length bits. - */ -#ifdef DEBUG -local void send_bits      OF((deflate_state *s, int value, int length)); - -local void send_bits(s, value, length) -    deflate_state *s; -    int value;  /* value to send */ -    int length; /* number of bits */ -{ -    Tracevv((stderr," l %2d v %4x ", length, value)); -    Assert(length > 0 && length <= 15, "invalid length"); -    s->bits_sent += (ulg)length; - -    /* If not enough room in bi_buf, use (valid) bits from bi_buf and -     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) -     * unused bits in value. -     */ -    if (s->bi_valid > (int)Buf_size - length) { -        s->bi_buf |= (value << s->bi_valid); -        put_short(s, s->bi_buf); -        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); -        s->bi_valid += length - Buf_size; -    } else { -        s->bi_buf |= value << s->bi_valid; -        s->bi_valid += length; -    } -} -#else /* !DEBUG */ - -#define send_bits(s, value, length) \ -{ int len = length;\ -  if (s->bi_valid > (int)Buf_size - len) {\ -    int val = value;\ -    s->bi_buf |= (val << s->bi_valid);\ -    put_short(s, s->bi_buf);\ -    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ -    s->bi_valid += len - Buf_size;\ -  } else {\ -    s->bi_buf |= (value) << s->bi_valid;\ -    s->bi_valid += len;\ -  }\ -} -#endif /* DEBUG */ - - -/* the arguments must not have side effects */ - -/* =========================================================================== - * Initialize the various 'constant' tables. - */ -local void tr_static_init() -{ -#if defined(GEN_TREES_H) || !defined(STDC) -    static int static_init_done = 0; -    int n;        /* iterates over tree elements */ -    int bits;     /* bit counter */ -    int length;   /* length value */ -    int code;     /* code value */ -    int dist;     /* distance index */ -    ush bl_count[MAX_BITS+1]; -    /* number of codes at each bit length for an optimal tree */ - -    if (static_init_done) return; - -    /* For some embedded targets, global variables are not initialized: */ -    static_l_desc.static_tree = static_ltree; -    static_l_desc.extra_bits = extra_lbits; -    static_d_desc.static_tree = static_dtree; -    static_d_desc.extra_bits = extra_dbits; -    static_bl_desc.extra_bits = extra_blbits; - -    /* Initialize the mapping length (0..255) -> length code (0..28) */ -    length = 0; -    for (code = 0; code < LENGTH_CODES-1; code++) { -        base_length[code] = length; -        for (n = 0; n < (1<<extra_lbits[code]); n++) { -            _length_code[length++] = (uch)code; -        } -    } -    Assert (length == 256, "tr_static_init: length != 256"); -    /* Note that the length 255 (match length 258) can be represented -     * in two different ways: code 284 + 5 bits or code 285, so we -     * overwrite length_code[255] to use the best encoding: -     */ -    _length_code[length-1] = (uch)code; - -    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ -    dist = 0; -    for (code = 0 ; code < 16; code++) { -        base_dist[code] = dist; -        for (n = 0; n < (1<<extra_dbits[code]); n++) { -            _dist_code[dist++] = (uch)code; -        } -    } -    Assert (dist == 256, "tr_static_init: dist != 256"); -    dist >>= 7; /* from now on, all distances are divided by 128 */ -    for ( ; code < D_CODES; code++) { -        base_dist[code] = dist << 7; -        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { -            _dist_code[256 + dist++] = (uch)code; -        } -    } -    Assert (dist == 256, "tr_static_init: 256+dist != 512"); - -    /* Construct the codes of the static literal tree */ -    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; -    n = 0; -    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; -    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; -    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; -    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; -    /* Codes 286 and 287 do not exist, but we must include them in the -     * tree construction to get a canonical Huffman tree (longest code -     * all ones) -     */ -    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); - -    /* The static distance tree is trivial: */ -    for (n = 0; n < D_CODES; n++) { -        static_dtree[n].Len = 5; -        static_dtree[n].Code = bi_reverse((unsigned)n, 5); -    } -    static_init_done = 1; - -#  ifdef GEN_TREES_H -    gen_trees_header(); -#  endif -#endif /* defined(GEN_TREES_H) || !defined(STDC) */ -} - -/* =========================================================================== - * Genererate the file trees.h describing the static trees. - */ -#ifdef GEN_TREES_H -#  ifndef DEBUG -#    include <stdio.h> -#  endif - -#  define SEPARATOR(i, last, width) \ -      ((i) == (last)? "\n};\n\n" :    \ -       ((i) % (width) == (width)-1 ? ",\n" : ", ")) - -void gen_trees_header() -{ -    FILE *header = fopen("trees.h", "w"); -    int i; - -    Assert (header != NULL, "Can't open trees.h"); -    fprintf(header, -            "/* header created automatically with -DGEN_TREES_H */\n\n"); - -    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); -    for (i = 0; i < L_CODES+2; i++) { -        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, -                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); -    } - -    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); -    for (i = 0; i < D_CODES; i++) { -        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, -                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); -    } - -    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n"); -    for (i = 0; i < DIST_CODE_LEN; i++) { -        fprintf(header, "%2u%s", _dist_code[i], -                SEPARATOR(i, DIST_CODE_LEN-1, 20)); -    } - -    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); -    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { -        fprintf(header, "%2u%s", _length_code[i], -                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); -    } - -    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); -    for (i = 0; i < LENGTH_CODES; i++) { -        fprintf(header, "%1u%s", base_length[i], -                SEPARATOR(i, LENGTH_CODES-1, 20)); -    } - -    fprintf(header, "local const int base_dist[D_CODES] = {\n"); -    for (i = 0; i < D_CODES; i++) { -        fprintf(header, "%5u%s", base_dist[i], -                SEPARATOR(i, D_CODES-1, 10)); -    } - -    fclose(header); -} -#endif /* GEN_TREES_H */ - -/* =========================================================================== - * Initialize the tree data structures for a new zlib stream. - */ -void _tr_init(s) -    deflate_state *s; -{ -    tr_static_init(); - -    s->l_desc.dyn_tree = s->dyn_ltree; -    s->l_desc.stat_desc = &static_l_desc; - -    s->d_desc.dyn_tree = s->dyn_dtree; -    s->d_desc.stat_desc = &static_d_desc; - -    s->bl_desc.dyn_tree = s->bl_tree; -    s->bl_desc.stat_desc = &static_bl_desc; - -    s->bi_buf = 0; -    s->bi_valid = 0; -    s->last_eob_len = 8; /* enough lookahead for inflate */ -#ifdef DEBUG -    s->compressed_len = 0L; -    s->bits_sent = 0L; -#endif - -    /* Initialize the first block of the first file: */ -    init_block(s); -} - -/* =========================================================================== - * Initialize a new block. - */ -local void init_block(s) -    deflate_state *s; -{ -    int n; /* iterates over tree elements */ - -    /* Initialize the trees. */ -    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; -    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; -    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; - -    s->dyn_ltree[END_BLOCK].Freq = 1; -    s->opt_len = s->static_len = 0L; -    s->last_lit = s->matches = 0; -} - -#define SMALLEST 1 -/* Index within the heap array of least frequent node in the Huffman tree */ - - -/* =========================================================================== - * Remove the smallest element from the heap and recreate the heap with - * one less element. Updates heap and heap_len. - */ -#define pqremove(s, tree, top) \ -{\ -    top = s->heap[SMALLEST]; \ -    s->heap[SMALLEST] = s->heap[s->heap_len--]; \ -    pqdownheap(s, tree, SMALLEST); \ -} - -/* =========================================================================== - * Compares to subtrees, using the tree depth as tie breaker when - * the subtrees have equal frequency. This minimizes the worst case length. - */ -#define smaller(tree, n, m, depth) \ -   (tree[n].Freq < tree[m].Freq || \ -   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) - -/* =========================================================================== - * Restore the heap property by moving down the tree starting at node k, - * exchanging a node with the smallest of its two sons if necessary, stopping - * when the heap property is re-established (each father smaller than its - * two sons). - */ -local void pqdownheap(s, tree, k) -    deflate_state *s; -    ct_data *tree;  /* the tree to restore */ -    int k;               /* node to move down */ -{ -    int v = s->heap[k]; -    int j = k << 1;  /* left son of k */ -    while (j <= s->heap_len) { -        /* Set j to the smallest of the two sons: */ -        if (j < s->heap_len && -            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { -            j++; -        } -        /* Exit if v is smaller than both sons */ -        if (smaller(tree, v, s->heap[j], s->depth)) break; - -        /* Exchange v with the smallest son */ -        s->heap[k] = s->heap[j];  k = j; - -        /* And continue down the tree, setting j to the left son of k */ -        j <<= 1; -    } -    s->heap[k] = v; -} - -/* =========================================================================== - * Compute the optimal bit lengths for a tree and update the total bit length - * for the current block. - * IN assertion: the fields freq and dad are set, heap[heap_max] and - *    above are the tree nodes sorted by increasing frequency. - * OUT assertions: the field len is set to the optimal bit length, the - *     array bl_count contains the frequencies for each bit length. - *     The length opt_len is updated; static_len is also updated if stree is - *     not null. - */ -local void gen_bitlen(s, desc) -    deflate_state *s; -    tree_desc *desc;    /* the tree descriptor */ -{ -    ct_data *tree        = desc->dyn_tree; -    int max_code         = desc->max_code; -    const ct_data *stree = desc->stat_desc->static_tree; -    const intf *extra    = desc->stat_desc->extra_bits; -    int base             = desc->stat_desc->extra_base; -    int max_length       = desc->stat_desc->max_length; -    int h;              /* heap index */ -    int n, m;           /* iterate over the tree elements */ -    int bits;           /* bit length */ -    int xbits;          /* extra bits */ -    ush f;              /* frequency */ -    int overflow = 0;   /* number of elements with bit length too large */ - -    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; - -    /* In a first pass, compute the optimal bit lengths (which may -     * overflow in the case of the bit length tree). -     */ -    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ - -    for (h = s->heap_max+1; h < HEAP_SIZE; h++) { -        n = s->heap[h]; -        bits = tree[tree[n].Dad].Len + 1; -        if (bits > max_length) bits = max_length, overflow++; -        tree[n].Len = (ush)bits; -        /* We overwrite tree[n].Dad which is no longer needed */ - -        if (n > max_code) continue; /* not a leaf node */ - -        s->bl_count[bits]++; -        xbits = 0; -        if (n >= base) xbits = extra[n-base]; -        f = tree[n].Freq; -        s->opt_len += (ulg)f * (bits + xbits); -        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); -    } -    if (overflow == 0) return; - -    Trace((stderr,"\nbit length overflow\n")); -    /* This happens for example on obj2 and pic of the Calgary corpus */ - -    /* Find the first bit length which could increase: */ -    do { -        bits = max_length-1; -        while (s->bl_count[bits] == 0) bits--; -        s->bl_count[bits]--;      /* move one leaf down the tree */ -        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ -        s->bl_count[max_length]--; -        /* The brother of the overflow item also moves one step up, -         * but this does not affect bl_count[max_length] -         */ -        overflow -= 2; -    } while (overflow > 0); - -    /* Now recompute all bit lengths, scanning in increasing frequency. -     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all -     * lengths instead of fixing only the wrong ones. This idea is taken -     * from 'ar' written by Haruhiko Okumura.) -     */ -    for (bits = max_length; bits != 0; bits--) { -        n = s->bl_count[bits]; -        while (n != 0) { -            m = s->heap[--h]; -            if (m > max_code) continue; -            if ((unsigned) tree[m].Len != (unsigned) bits) { -                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); -                s->opt_len += ((long)bits - (long)tree[m].Len) -                              *(long)tree[m].Freq; -                tree[m].Len = (ush)bits; -            } -            n--; -        } -    } -} - -/* =========================================================================== - * Generate the codes for a given tree and bit counts (which need not be - * optimal). - * IN assertion: the array bl_count contains the bit length statistics for - * the given tree and the field len is set for all tree elements. - * OUT assertion: the field code is set for all tree elements of non - *     zero code length. - */ -local void gen_codes (tree, max_code, bl_count) -    ct_data *tree;             /* the tree to decorate */ -    int max_code;              /* largest code with non zero frequency */ -    ushf *bl_count;            /* number of codes at each bit length */ -{ -    ush next_code[MAX_BITS+1]; /* next code value for each bit length */ -    ush code = 0;              /* running code value */ -    int bits;                  /* bit index */ -    int n;                     /* code index */ - -    /* The distribution counts are first used to generate the code values -     * without bit reversal. -     */ -    for (bits = 1; bits <= MAX_BITS; bits++) { -        next_code[bits] = code = (code + bl_count[bits-1]) << 1; -    } -    /* Check that the bit counts in bl_count are consistent. The last code -     * must be all ones. -     */ -    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, -            "inconsistent bit counts"); -    Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); - -    for (n = 0;  n <= max_code; n++) { -        int len = tree[n].Len; -        if (len == 0) continue; -        /* Now reverse the bits */ -        tree[n].Code = bi_reverse(next_code[len]++, len); - -        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", -             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); -    } -} - -/* =========================================================================== - * Construct one Huffman tree and assigns the code bit strings and lengths. - * Update the total bit length for the current block. - * IN assertion: the field freq is set for all tree elements. - * OUT assertions: the fields len and code are set to the optimal bit length - *     and corresponding code. The length opt_len is updated; static_len is - *     also updated if stree is not null. The field max_code is set. - */ -local void build_tree(s, desc) -    deflate_state *s; -    tree_desc *desc; /* the tree descriptor */ -{ -    ct_data *tree         = desc->dyn_tree; -    const ct_data *stree  = desc->stat_desc->static_tree; -    int elems             = desc->stat_desc->elems; -    int n, m;          /* iterate over heap elements */ -    int max_code = -1; /* largest code with non zero frequency */ -    int node;          /* new node being created */ - -    /* Construct the initial heap, with least frequent element in -     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. -     * heap[0] is not used. -     */ -    s->heap_len = 0, s->heap_max = HEAP_SIZE; - -    for (n = 0; n < elems; n++) { -        if (tree[n].Freq != 0) { -            s->heap[++(s->heap_len)] = max_code = n; -            s->depth[n] = 0; -        } else { -            tree[n].Len = 0; -        } -    } - -    /* The pkzip format requires that at least one distance code exists, -     * and that at least one bit should be sent even if there is only one -     * possible code. So to avoid special checks later on we force at least -     * two codes of non zero frequency. -     */ -    while (s->heap_len < 2) { -        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); -        tree[node].Freq = 1; -        s->depth[node] = 0; -        s->opt_len--; if (stree) s->static_len -= stree[node].Len; -        /* node is 0 or 1 so it does not have extra bits */ -    } -    desc->max_code = max_code; - -    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, -     * establish sub-heaps of increasing lengths: -     */ -    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); - -    /* Construct the Huffman tree by repeatedly combining the least two -     * frequent nodes. -     */ -    node = elems;              /* next internal node of the tree */ -    do { -        pqremove(s, tree, n);  /* n = node of least frequency */ -        m = s->heap[SMALLEST]; /* m = node of next least frequency */ - -        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ -        s->heap[--(s->heap_max)] = m; - -        /* Create a new node father of n and m */ -        tree[node].Freq = tree[n].Freq + tree[m].Freq; -        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? -                                s->depth[n] : s->depth[m]) + 1); -        tree[n].Dad = tree[m].Dad = (ush)node; -#ifdef DUMP_BL_TREE -        if (tree == s->bl_tree) { -            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", -                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); -        } -#endif -        /* and insert the new node in the heap */ -        s->heap[SMALLEST] = node++; -        pqdownheap(s, tree, SMALLEST); - -    } while (s->heap_len >= 2); - -    s->heap[--(s->heap_max)] = s->heap[SMALLEST]; - -    /* At this point, the fields freq and dad are set. We can now -     * generate the bit lengths. -     */ -    gen_bitlen(s, (tree_desc *)desc); - -    /* The field len is now set, we can generate the bit codes */ -    gen_codes ((ct_data *)tree, max_code, s->bl_count); -} - -/* =========================================================================== - * Scan a literal or distance tree to determine the frequencies of the codes - * in the bit length tree. - */ -local void scan_tree (s, tree, max_code) -    deflate_state *s; -    ct_data *tree;   /* the tree to be scanned */ -    int max_code;    /* and its largest code of non zero frequency */ -{ -    int n;                     /* iterates over all tree elements */ -    int prevlen = -1;          /* last emitted length */ -    int curlen;                /* length of current code */ -    int nextlen = tree[0].Len; /* length of next code */ -    int count = 0;             /* repeat count of the current code */ -    int max_count = 7;         /* max repeat count */ -    int min_count = 4;         /* min repeat count */ - -    if (nextlen == 0) max_count = 138, min_count = 3; -    tree[max_code+1].Len = (ush)0xffff; /* guard */ - -    for (n = 0; n <= max_code; n++) { -        curlen = nextlen; nextlen = tree[n+1].Len; -        if (++count < max_count && curlen == nextlen) { -            continue; -        } else if (count < min_count) { -            s->bl_tree[curlen].Freq += count; -        } else if (curlen != 0) { -            if (curlen != prevlen) s->bl_tree[curlen].Freq++; -            s->bl_tree[REP_3_6].Freq++; -        } else if (count <= 10) { -            s->bl_tree[REPZ_3_10].Freq++; -        } else { -            s->bl_tree[REPZ_11_138].Freq++; -        } -        count = 0; prevlen = curlen; -        if (nextlen == 0) { -            max_count = 138, min_count = 3; -        } else if (curlen == nextlen) { -            max_count = 6, min_count = 3; -        } else { -            max_count = 7, min_count = 4; -        } -    } -} - -/* =========================================================================== - * Send a literal or distance tree in compressed form, using the codes in - * bl_tree. - */ -local void send_tree (s, tree, max_code) -    deflate_state *s; -    ct_data *tree; /* the tree to be scanned */ -    int max_code;       /* and its largest code of non zero frequency */ -{ -    int n;                     /* iterates over all tree elements */ -    int prevlen = -1;          /* last emitted length */ -    int curlen;                /* length of current code */ -    int nextlen = tree[0].Len; /* length of next code */ -    int count = 0;             /* repeat count of the current code */ -    int max_count = 7;         /* max repeat count */ -    int min_count = 4;         /* min repeat count */ - -    /* tree[max_code+1].Len = -1; */  /* guard already set */ -    if (nextlen == 0) max_count = 138, min_count = 3; - -    for (n = 0; n <= max_code; n++) { -        curlen = nextlen; nextlen = tree[n+1].Len; -        if (++count < max_count && curlen == nextlen) { -            continue; -        } else if (count < min_count) { -            do { send_code(s, curlen, s->bl_tree); } while (--count != 0); - -        } else if (curlen != 0) { -            if (curlen != prevlen) { -                send_code(s, curlen, s->bl_tree); count--; -            } -            Assert(count >= 3 && count <= 6, " 3_6?"); -            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); - -        } else if (count <= 10) { -            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); - -        } else { -            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); -        } -        count = 0; prevlen = curlen; -        if (nextlen == 0) { -            max_count = 138, min_count = 3; -        } else if (curlen == nextlen) { -            max_count = 6, min_count = 3; -        } else { -            max_count = 7, min_count = 4; -        } -    } -} - -/* =========================================================================== - * Construct the Huffman tree for the bit lengths and return the index in - * bl_order of the last bit length code to send. - */ -local int build_bl_tree(s) -    deflate_state *s; -{ -    int max_blindex;  /* index of last bit length code of non zero freq */ - -    /* Determine the bit length frequencies for literal and distance trees */ -    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); -    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); - -    /* Build the bit length tree: */ -    build_tree(s, (tree_desc *)(&(s->bl_desc))); -    /* opt_len now includes the length of the tree representations, except -     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. -     */ - -    /* Determine the number of bit length codes to send. The pkzip format -     * requires that at least 4 bit length codes be sent. (appnote.txt says -     * 3 but the actual value used is 4.) -     */ -    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { -        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; -    } -    /* Update opt_len to include the bit length tree and counts */ -    s->opt_len += 3*(max_blindex+1) + 5+5+4; -    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", -            s->opt_len, s->static_len)); - -    return max_blindex; -} - -/* =========================================================================== - * Send the header for a block using dynamic Huffman trees: the counts, the - * lengths of the bit length codes, the literal tree and the distance tree. - * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. - */ -local void send_all_trees(s, lcodes, dcodes, blcodes) -    deflate_state *s; -    int lcodes, dcodes, blcodes; /* number of codes for each tree */ -{ -    int rank;                    /* index in bl_order */ - -    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); -    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, -            "too many codes"); -    Tracev((stderr, "\nbl counts: ")); -    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ -    send_bits(s, dcodes-1,   5); -    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */ -    for (rank = 0; rank < blcodes; rank++) { -        Tracev((stderr, "\nbl code %2d ", bl_order[rank])); -        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); -    } -    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); - -    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ -    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); - -    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ -    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); -} - -/* =========================================================================== - * Send a stored block - */ -void _tr_stored_block(s, buf, stored_len, eof) -    deflate_state *s; -    charf *buf;       /* input block */ -    ulg stored_len;   /* length of input block */ -    int eof;          /* true if this is the last block for a file */ -{ -    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */ -#ifdef DEBUG -    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; -    s->compressed_len += (stored_len + 4) << 3; -#endif -    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ -} - -/* =========================================================================== - * Send one empty static block to give enough lookahead for inflate. - * This takes 10 bits, of which 7 may remain in the bit buffer. - * The current inflate code requires 9 bits of lookahead. If the - * last two codes for the previous block (real code plus EOB) were coded - * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode - * the last real code. In this case we send two empty static blocks instead - * of one. (There are no problems if the previous block is stored or fixed.) - * To simplify the code, we assume the worst case of last real code encoded - * on one bit only. - */ -void _tr_align(s) -    deflate_state *s; -{ -    send_bits(s, STATIC_TREES<<1, 3); -    send_code(s, END_BLOCK, static_ltree); -#ifdef DEBUG -    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ -#endif -    bi_flush(s); -    /* Of the 10 bits for the empty block, we have already sent -     * (10 - bi_valid) bits. The lookahead for the last real code (before -     * the EOB of the previous block) was thus at least one plus the length -     * of the EOB plus what we have just sent of the empty static block. -     */ -    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { -        send_bits(s, STATIC_TREES<<1, 3); -        send_code(s, END_BLOCK, static_ltree); -#ifdef DEBUG -        s->compressed_len += 10L; -#endif -        bi_flush(s); -    } -    s->last_eob_len = 7; -} - -/* =========================================================================== - * Determine the best encoding for the current block: dynamic trees, static - * trees or store, and output the encoded block to the zip file. - */ -void _tr_flush_block(s, buf, stored_len, eof) -    deflate_state *s; -    charf *buf;       /* input block, or NULL if too old */ -    ulg stored_len;   /* length of input block */ -    int eof;          /* true if this is the last block for a file */ -{ -    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ -    int max_blindex = 0;  /* index of last bit length code of non zero freq */ - -    /* Build the Huffman trees unless a stored block is forced */ -    if (s->level > 0) { - -        /* Check if the file is binary or text */ -        if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) -            set_data_type(s); - -        /* Construct the literal and distance trees */ -        build_tree(s, (tree_desc *)(&(s->l_desc))); -        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, -                s->static_len)); - -        build_tree(s, (tree_desc *)(&(s->d_desc))); -        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, -                s->static_len)); -        /* At this point, opt_len and static_len are the total bit lengths of -         * the compressed block data, excluding the tree representations. -         */ - -        /* Build the bit length tree for the above two trees, and get the index -         * in bl_order of the last bit length code to send. -         */ -        max_blindex = build_bl_tree(s); - -        /* Determine the best encoding. Compute the block lengths in bytes. */ -        opt_lenb = (s->opt_len+3+7)>>3; -        static_lenb = (s->static_len+3+7)>>3; - -        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", -                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, -                s->last_lit)); - -        if (static_lenb <= opt_lenb) opt_lenb = static_lenb; - -    } else { -        Assert(buf != (char*)0, "lost buf"); -        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ -    } - -#ifdef FORCE_STORED -    if (buf != (char*)0) { /* force stored block */ -#else -    if (stored_len+4 <= opt_lenb && buf != (char*)0) { -                       /* 4: two words for the lengths */ -#endif -        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. -         * Otherwise we can't have processed more than WSIZE input bytes since -         * the last block flush, because compression would have been -         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to -         * transform a block into a stored block. -         */ -        _tr_stored_block(s, buf, stored_len, eof); - -#ifdef FORCE_STATIC -    } else if (static_lenb >= 0) { /* force static trees */ -#else -    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { -#endif -        send_bits(s, (STATIC_TREES<<1)+eof, 3); -        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); -#ifdef DEBUG -        s->compressed_len += 3 + s->static_len; -#endif -    } else { -        send_bits(s, (DYN_TREES<<1)+eof, 3); -        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, -                       max_blindex+1); -        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); -#ifdef DEBUG -        s->compressed_len += 3 + s->opt_len; -#endif -    } -    Assert (s->compressed_len == s->bits_sent, "bad compressed size"); -    /* The above check is made mod 2^32, for files larger than 512 MB -     * and uLong implemented on 32 bits. -     */ -    init_block(s); - -    if (eof) { -        bi_windup(s); -#ifdef DEBUG -        s->compressed_len += 7;  /* align on byte boundary */ -#endif -    } -    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, -           s->compressed_len-7*eof)); -} - -/* =========================================================================== - * Save the match info and tally the frequency counts. Return true if - * the current block must be flushed. - */ -int _tr_tally (s, dist, lc) -    deflate_state *s; -    unsigned dist;  /* distance of matched string */ -    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */ -{ -    s->d_buf[s->last_lit] = (ush)dist; -    s->l_buf[s->last_lit++] = (uch)lc; -    if (dist == 0) { -        /* lc is the unmatched char */ -        s->dyn_ltree[lc].Freq++; -    } else { -        s->matches++; -        /* Here, lc is the match length - MIN_MATCH */ -        dist--;             /* dist = match distance - 1 */ -        Assert((ush)dist < (ush)MAX_DIST(s) && -               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && -               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); - -        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; -        s->dyn_dtree[d_code(dist)].Freq++; -    } - -#ifdef TRUNCATE_BLOCK -    /* Try to guess if it is profitable to stop the current block here */ -    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { -        /* Compute an upper bound for the compressed length */ -        ulg out_length = (ulg)s->last_lit*8L; -        ulg in_length = (ulg)((long)s->strstart - s->block_start); -        int dcode; -        for (dcode = 0; dcode < D_CODES; dcode++) { -            out_length += (ulg)s->dyn_dtree[dcode].Freq * -                (5L+extra_dbits[dcode]); -        } -        out_length >>= 3; -        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", -               s->last_lit, in_length, out_length, -               100L - out_length*100L/in_length)); -        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; -    } -#endif -    return (s->last_lit == s->lit_bufsize-1); -    /* We avoid equality with lit_bufsize because of wraparound at 64K -     * on 16 bit machines and because stored blocks are restricted to -     * 64K-1 bytes. -     */ -} - -/* =========================================================================== - * Send the block data compressed using the given Huffman trees - */ -local void compress_block(s, ltree, dtree) -    deflate_state *s; -    ct_data *ltree; /* literal tree */ -    ct_data *dtree; /* distance tree */ -{ -    unsigned dist;      /* distance of matched string */ -    int lc;             /* match length or unmatched char (if dist == 0) */ -    unsigned lx = 0;    /* running index in l_buf */ -    unsigned code;      /* the code to send */ -    int extra;          /* number of extra bits to send */ - -    if (s->last_lit != 0) do { -        dist = s->d_buf[lx]; -        lc = s->l_buf[lx++]; -        if (dist == 0) { -            send_code(s, lc, ltree); /* send a literal byte */ -            Tracecv(isgraph(lc), (stderr," '%c' ", lc)); -        } else { -            /* Here, lc is the match length - MIN_MATCH */ -            code = _length_code[lc]; -            send_code(s, code+LITERALS+1, ltree); /* send the length code */ -            extra = extra_lbits[code]; -            if (extra != 0) { -                lc -= base_length[code]; -                send_bits(s, lc, extra);       /* send the extra length bits */ -            } -            dist--; /* dist is now the match distance - 1 */ -            code = d_code(dist); -            Assert (code < D_CODES, "bad d_code"); - -            send_code(s, code, dtree);       /* send the distance code */ -            extra = extra_dbits[code]; -            if (extra != 0) { -                dist -= base_dist[code]; -                send_bits(s, dist, extra);   /* send the extra distance bits */ -            } -        } /* literal or match pair ? */ - -        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ -        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, -               "pendingBuf overflow"); - -    } while (lx < s->last_lit); - -    send_code(s, END_BLOCK, ltree); -    s->last_eob_len = ltree[END_BLOCK].Len; -} - -/* =========================================================================== - * Set the data type to BINARY or TEXT, using a crude approximation: - * set it to Z_TEXT if all symbols are either printable characters (33 to 255) - * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. - * IN assertion: the fields Freq of dyn_ltree are set. - */ -local void set_data_type(s) -    deflate_state *s; -{ -    int n; - -    for (n = 0; n < 9; n++) -        if (s->dyn_ltree[n].Freq != 0) -            break; -    if (n == 9) -        for (n = 14; n < 32; n++) -            if (s->dyn_ltree[n].Freq != 0) -                break; -    s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; -} - -/* =========================================================================== - * Reverse the first len bits of a code, using straightforward code (a faster - * method would use a table) - * IN assertion: 1 <= len <= 15 - */ -local unsigned bi_reverse(code, len) -    unsigned code; /* the value to invert */ -    int len;       /* its bit length */ -{ -    register unsigned res = 0; -    do { -        res |= code & 1; -        code >>= 1, res <<= 1; -    } while (--len > 0); -    return res >> 1; -} - -/* =========================================================================== - * Flush the bit buffer, keeping at most 7 bits in it. - */ -local void bi_flush(s) -    deflate_state *s; -{ -    if (s->bi_valid == 16) { -        put_short(s, s->bi_buf); -        s->bi_buf = 0; -        s->bi_valid = 0; -    } else if (s->bi_valid >= 8) { -        put_byte(s, (Byte)s->bi_buf); -        s->bi_buf >>= 8; -        s->bi_valid -= 8; -    } -} - -/* =========================================================================== - * Flush the bit buffer and align the output on a byte boundary - */ -local void bi_windup(s) -    deflate_state *s; -{ -    if (s->bi_valid > 8) { -        put_short(s, s->bi_buf); -    } else if (s->bi_valid > 0) { -        put_byte(s, (Byte)s->bi_buf); -    } -    s->bi_buf = 0; -    s->bi_valid = 0; -#ifdef DEBUG -    s->bits_sent = (s->bits_sent+7) & ~7; -#endif -} - -/* =========================================================================== - * Copy a stored block, storing first the length and its - * one's complement if requested. - */ -local void copy_block(s, buf, len, header) -    deflate_state *s; -    charf    *buf;    /* the input data */ -    unsigned len;     /* its length */ -    int      header;  /* true if block header must be written */ -{ -    bi_windup(s);        /* align on byte boundary */ -    s->last_eob_len = 8; /* enough lookahead for inflate */ - -    if (header) { -        put_short(s, (ush)len); -        put_short(s, (ush)~len); -#ifdef DEBUG -        s->bits_sent += 2*16; -#endif -    } -#ifdef DEBUG -    s->bits_sent += (ulg)len<<3; -#endif -    while (len--) { -        put_byte(s, *buf++); -    } -}  | 
 Swift