diff options
| author | Kevin Smith <git@kismith.co.uk> | 2012-09-01 19:15:46 (GMT) | 
|---|---|---|
| committer | Kevin Smith <git@kismith.co.uk> | 2012-09-01 19:16:16 (GMT) | 
| commit | 903f044aea9c7b356c072bc85379d0e9825929d3 (patch) | |
| tree | 6aa3da086c2a697c80da4add98e52e443bfcae18 /3rdParty/SQLiteAsync | |
| parent | 9bc48bf7e580a2a0962e9f62069f061315f1b3f2 (diff) | |
| download | swift-903f044aea9c7b356c072bc85379d0e9825929d3.zip swift-903f044aea9c7b356c072bc85379d0e9825929d3.tar.bz2 | |
Move async into its own module so it'll work with system sqlite too
Diffstat (limited to '3rdParty/SQLiteAsync')
| -rw-r--r-- | 3rdParty/SQLiteAsync/SConscript | 20 | ||||
| -rw-r--r-- | 3rdParty/SQLiteAsync/sqlite3async.c | 1700 | ||||
| -rw-r--r-- | 3rdParty/SQLiteAsync/sqlite3async.h | 223 | 
3 files changed, 1943 insertions, 0 deletions
| diff --git a/3rdParty/SQLiteAsync/SConscript b/3rdParty/SQLiteAsync/SConscript new file mode 100644 index 0000000..90f70d3 --- /dev/null +++ b/3rdParty/SQLiteAsync/SConscript @@ -0,0 +1,20 @@ +Import("env") + + +################################################################################ +# Flags +################################################################################ + + +if env["SCONS_STAGE"] == "flags" : +	env["SQLITE_ASYNC_FLAGS"] = { +			"CPPPATH": [Dir(".")], +			"LIBPATH": [Dir(".")], +			"LIBS": ["SQLiteAsync"], +		} + +if env["SCONS_STAGE"] == "build" : +	myenv = env.Clone() +	myenv.Replace(CCFLAGS = [flag for flag in env["CCFLAGS"] if flag not in ["-W", "-Wall"]]) +	myenv.MergeFlags(env.get("SQLITE_FLAGS", {})) +	myenv.StaticLibrary("SQLiteAsync", ["sqlite3async.c"], CPPPATH = ["."]) diff --git a/3rdParty/SQLiteAsync/sqlite3async.c b/3rdParty/SQLiteAsync/sqlite3async.c new file mode 100644 index 0000000..0814da7 --- /dev/null +++ b/3rdParty/SQLiteAsync/sqlite3async.c @@ -0,0 +1,1700 @@ +/* +** 2005 December 14 +** +** The author disclaims copyright to this source code.  In place of +** a legal notice, here is a blessing: +** +**    May you do good and not evil. +**    May you find forgiveness for yourself and forgive others. +**    May you share freely, never taking more than you give. +** +************************************************************************* +** +** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ +** +** This file contains the implementation of an asynchronous IO backend  +** for SQLite. +*/ + +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) + +#include "sqlite3async.h" +#include "sqlite3.h" +#include <stdarg.h> +#include <string.h> +#include <assert.h> + +/* Useful macros used in several places */ +#define MIN(x,y) ((x)<(y)?(x):(y)) +#define MAX(x,y) ((x)>(y)?(x):(y)) + +#ifndef SQLITE_AMALGAMATION +/* Macro to mark parameters as unused and silence compiler warnings. */ +#define UNUSED_PARAMETER(x) (void)(x) +#endif + +/* Forward references */ +typedef struct AsyncWrite AsyncWrite; +typedef struct AsyncFile AsyncFile; +typedef struct AsyncFileData AsyncFileData; +typedef struct AsyncFileLock AsyncFileLock; +typedef struct AsyncLock AsyncLock; + +/* Enable for debugging */ +#ifndef NDEBUG +#include <stdio.h> +static int sqlite3async_trace = 0; +# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X +static void asyncTrace(const char *zFormat, ...){ +  char *z; +  va_list ap; +  va_start(ap, zFormat); +  z = sqlite3_vmprintf(zFormat, ap); +  va_end(ap); +  fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); +  sqlite3_free(z); +} +#else +# define ASYNC_TRACE(X) +#endif + +/* +** THREAD SAFETY NOTES +** +** Basic rules: +** +**     * Both read and write access to the global write-op queue must be  +**       protected by the async.queueMutex. As are the async.ioError and +**       async.nFile variables. +** +**     * The async.pLock list and all AsyncLock and AsyncFileLock +**       structures must be protected by the async.lockMutex mutex. +** +**     * The file handles from the underlying system are not assumed to  +**       be thread safe. +** +**     * See the last two paragraphs under "The Writer Thread" for +**       an assumption to do with file-handle synchronization by the Os. +** +** Deadlock prevention: +** +**     There are three mutex used by the system: the "writer" mutex,  +**     the "queue" mutex and the "lock" mutex. Rules are: +** +**     * It is illegal to block on the writer mutex when any other mutex +**       are held, and  +** +**     * It is illegal to block on the queue mutex when the lock mutex +**       is held. +** +**     i.e. mutex's must be grabbed in the order "writer", "queue", "lock". +** +** File system operations (invoked by SQLite thread): +** +**     xOpen +**     xDelete +**     xFileExists +** +** File handle operations (invoked by SQLite thread): +** +**         asyncWrite, asyncClose, asyncTruncate, asyncSync  +**     +**     The operations above add an entry to the global write-op list. They +**     prepare the entry, acquire the async.queueMutex momentarily while +**     list pointers are  manipulated to insert the new entry, then release +**     the mutex and signal the writer thread to wake up in case it happens +**     to be asleep. +** +**     +**         asyncRead, asyncFileSize. +** +**     Read operations. Both of these read from both the underlying file +**     first then adjust their result based on pending writes in the  +**     write-op queue.   So async.queueMutex is held for the duration +**     of these operations to prevent other threads from changing the +**     queue in mid operation. +**     +** +**         asyncLock, asyncUnlock, asyncCheckReservedLock +**     +**     These primitives implement in-process locking using a hash table +**     on the file name.  Files are locked correctly for connections coming +**     from the same process.  But other processes cannot see these locks +**     and will therefore not honor them. +** +** +** The writer thread: +** +**     The async.writerMutex is used to make sure only there is only +**     a single writer thread running at a time. +** +**     Inside the writer thread is a loop that works like this: +** +**         WHILE (write-op list is not empty) +**             Do IO operation at head of write-op list +**             Remove entry from head of write-op list +**         END WHILE +** +**     The async.queueMutex is always held during the <write-op list is  +**     not empty> test, and when the entry is removed from the head +**     of the write-op list. Sometimes it is held for the interim +**     period (while the IO is performed), and sometimes it is +**     relinquished. It is relinquished if (a) the IO op is an +**     ASYNC_CLOSE or (b) when the file handle was opened, two of +**     the underlying systems handles were opened on the same +**     file-system entry. +** +**     If condition (b) above is true, then one file-handle  +**     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the +**     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()  +**     threads to perform write() operations. This means that read  +**     operations are not blocked by asynchronous writes (although  +**     asynchronous writes may still be blocked by reads). +** +**     This assumes that the OS keeps two handles open on the same file +**     properly in sync. That is, any read operation that starts after a +**     write operation on the same file system entry has completed returns +**     data consistent with the write. We also assume that if one thread  +**     reads a file while another is writing it all bytes other than the +**     ones actually being written contain valid data. +** +**     If the above assumptions are not true, set the preprocessor symbol +**     SQLITE_ASYNC_TWO_FILEHANDLES to 0. +*/ + + +#ifndef NDEBUG +# define TESTONLY( X ) X +#else +# define TESTONLY( X ) +#endif + +/* +** PORTING FUNCTIONS +** +** There are two definitions of the following functions. One for pthreads +** compatible systems and one for Win32. These functions isolate the OS +** specific code required by each platform. +** +** The system uses three mutexes and a single condition variable. To +** block on a mutex, async_mutex_enter() is called. The parameter passed +** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, +** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three +** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is +** called with a parameter identifying the mutex being unlocked. Mutexes +** are not recursive - it is an error to call async_mutex_enter() to +** lock a mutex that is already locked, or to call async_mutex_leave() +** to unlock a mutex that is not currently locked. +** +** The async_cond_wait() and async_cond_signal() functions are modelled +** on the pthreads functions with similar names. The first parameter to +** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() +** is called the mutex identified by the second parameter must be held. +** The mutex is unlocked, and the calling thread simultaneously begins  +** waiting for the condition variable to be signalled by another thread. +** After another thread signals the condition variable, the calling +** thread stops waiting, locks mutex eMutex and returns. The  +** async_cond_signal() function is used to signal the condition variable.  +** It is assumed that the mutex used by the thread calling async_cond_wait()  +** is held by the caller of async_cond_signal() (otherwise there would be  +** a race condition). +** +** It is guaranteed that no other thread will call async_cond_wait() when +** there is already a thread waiting on the condition variable. +** +** The async_sched_yield() function is called to suggest to the operating +** system that it would be a good time to shift the current thread off the +** CPU. The system will still work if this function is not implemented +** (it is not currently implemented for win32), but it might be marginally +** more efficient if it is. +*/ +static void async_mutex_enter(int eMutex); +static void async_mutex_leave(int eMutex); +static void async_cond_wait(int eCond, int eMutex); +static void async_cond_signal(int eCond); +static void async_sched_yield(void); + +/* +** There are also two definitions of the following. async_os_initialize() +** is called when the asynchronous VFS is first installed, and os_shutdown() +** is called when it is uninstalled (from within sqlite3async_shutdown()). +** +** For pthreads builds, both of these functions are no-ops. For win32, +** they provide an opportunity to initialize and finalize the required +** mutex and condition variables. +** +** If async_os_initialize() returns other than zero, then the initialization +** fails and SQLITE_ERROR is returned to the user. +*/ +static int async_os_initialize(void); +static void async_os_shutdown(void); + +/* Values for use as the 'eMutex' argument of the above functions. The +** integer values assigned to these constants are important for assert() +** statements that verify that mutexes are locked in the correct order. +** Specifically, it is unsafe to try to lock mutex N while holding a lock  +** on mutex M if (M<=N). +*/ +#define ASYNC_MUTEX_LOCK    0 +#define ASYNC_MUTEX_QUEUE   1 +#define ASYNC_MUTEX_WRITER  2 + +/* Values for use as the 'eCond' argument of the above functions. */ +#define ASYNC_COND_QUEUE    0 + +/************************************************************************* +** Start of OS specific code. +*/ +#if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) + +#include <windows.h> + +/* The following block contains the win32 specific code. */ + +#define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) + +static struct AsyncPrimitives { +  int isInit; +  DWORD aHolder[3]; +  CRITICAL_SECTION aMutex[3]; +  HANDLE aCond[1]; +} primitives = { 0 }; + +static int async_os_initialize(void){ +  if( !primitives.isInit ){ +    primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); +    if( primitives.aCond[0]==NULL ){ +      return 1; +    } +    InitializeCriticalSection(&primitives.aMutex[0]); +    InitializeCriticalSection(&primitives.aMutex[1]); +    InitializeCriticalSection(&primitives.aMutex[2]); +    primitives.isInit = 1; +  } +  return 0; +} +static void async_os_shutdown(void){ +  if( primitives.isInit ){ +    DeleteCriticalSection(&primitives.aMutex[0]); +    DeleteCriticalSection(&primitives.aMutex[1]); +    DeleteCriticalSection(&primitives.aMutex[2]); +    CloseHandle(primitives.aCond[0]); +    primitives.isInit = 0; +  } +} + +/* The following block contains the Win32 specific code. */ +static void async_mutex_enter(int eMutex){ +  assert( eMutex==0 || eMutex==1 || eMutex==2 ); +  assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); +  assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); +  assert( eMutex!=0 || (!mutex_held(0)) ); +  EnterCriticalSection(&primitives.aMutex[eMutex]); +  TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) +} +static void async_mutex_leave(int eMutex){ +  assert( eMutex==0 || eMutex==1 || eMutex==2 ); +  assert( mutex_held(eMutex) ); +  TESTONLY( primitives.aHolder[eMutex] = 0; ) +  LeaveCriticalSection(&primitives.aMutex[eMutex]); +} +static void async_cond_wait(int eCond, int eMutex){ +  ResetEvent(primitives.aCond[eCond]); +  async_mutex_leave(eMutex); +  WaitForSingleObject(primitives.aCond[eCond], INFINITE); +  async_mutex_enter(eMutex); +} +static void async_cond_signal(int eCond){ +  assert( mutex_held(ASYNC_MUTEX_QUEUE) ); +  SetEvent(primitives.aCond[eCond]); +} +static void async_sched_yield(void){ +  Sleep(0); +} +#else + +/* The following block contains the pthreads specific code. */ +#include <pthread.h> +#include <sched.h> + +#define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) + +static int  async_os_initialize(void) {return 0;} +static void async_os_shutdown(void) {} + +static struct AsyncPrimitives { +  pthread_mutex_t aMutex[3]; +  pthread_cond_t aCond[1]; +  pthread_t aHolder[3]; +} primitives = { +  { PTHREAD_MUTEX_INITIALIZER,  +    PTHREAD_MUTEX_INITIALIZER,  +    PTHREAD_MUTEX_INITIALIZER +  } , { +    PTHREAD_COND_INITIALIZER +  } , { 0, 0, 0 } +}; + +static void async_mutex_enter(int eMutex){ +  assert( eMutex==0 || eMutex==1 || eMutex==2 ); +  assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); +  assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); +  assert( eMutex!=0 || (!mutex_held(0)) ); +  pthread_mutex_lock(&primitives.aMutex[eMutex]); +  TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) +} +static void async_mutex_leave(int eMutex){ +  assert( eMutex==0 || eMutex==1 || eMutex==2 ); +  assert( mutex_held(eMutex) ); +  TESTONLY( primitives.aHolder[eMutex] = 0; ) +  pthread_mutex_unlock(&primitives.aMutex[eMutex]); +} +static void async_cond_wait(int eCond, int eMutex){ +  assert( eMutex==0 || eMutex==1 || eMutex==2 ); +  assert( mutex_held(eMutex) ); +  TESTONLY( primitives.aHolder[eMutex] = 0; ) +  pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); +  TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) +} +static void async_cond_signal(int eCond){ +  assert( mutex_held(ASYNC_MUTEX_QUEUE) ); +  pthread_cond_signal(&primitives.aCond[eCond]); +} +static void async_sched_yield(void){ +  sched_yield(); +} +#endif +/* +** End of OS specific code. +*************************************************************************/ + +#define assert_mutex_is_held(X) assert( mutex_held(X) ) + + +#ifndef SQLITE_ASYNC_TWO_FILEHANDLES +/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ +#define SQLITE_ASYNC_TWO_FILEHANDLES 1 +#endif + +/* +** State information is held in the static variable "async" defined +** as the following structure. +** +** Both async.ioError and async.nFile are protected by async.queueMutex. +*/ +static struct TestAsyncStaticData { +  AsyncWrite *pQueueFirst;     /* Next write operation to be processed */ +  AsyncWrite *pQueueLast;      /* Last write operation on the list */ +  AsyncLock *pLock;            /* Linked list of all AsyncLock structures */ +  volatile int ioDelay;        /* Extra delay between write operations */ +  volatile int eHalt;          /* One of the SQLITEASYNC_HALT_XXX values */ +  volatile int bLockFiles;     /* Current value of "lockfiles" parameter */ +  int ioError;                 /* True if an IO error has occurred */ +  int nFile;                   /* Number of open files (from sqlite pov) */ +} async = { 0,0,0,0,0,1,0,0 }; + +/* Possible values of AsyncWrite.op */ +#define ASYNC_NOOP          0 +#define ASYNC_WRITE         1 +#define ASYNC_SYNC          2 +#define ASYNC_TRUNCATE      3 +#define ASYNC_CLOSE         4 +#define ASYNC_DELETE        5 +#define ASYNC_OPENEXCLUSIVE 6 +#define ASYNC_UNLOCK        7 + +/* Names of opcodes.  Used for debugging only. +** Make sure these stay in sync with the macros above! +*/ +static const char *azOpcodeName[] = { +  "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" +}; + +/* +** Entries on the write-op queue are instances of the AsyncWrite +** structure, defined here. +** +** The interpretation of the iOffset and nByte variables varies depending  +** on the value of AsyncWrite.op: +** +** ASYNC_NOOP: +**     No values used. +** +** ASYNC_WRITE: +**     iOffset -> Offset in file to write to. +**     nByte   -> Number of bytes of data to write (pointed to by zBuf). +** +** ASYNC_SYNC: +**     nByte   -> flags to pass to sqlite3OsSync(). +** +** ASYNC_TRUNCATE: +**     iOffset -> Size to truncate file to. +**     nByte   -> Unused. +** +** ASYNC_CLOSE: +**     iOffset -> Unused. +**     nByte   -> Unused. +** +** ASYNC_DELETE: +**     iOffset -> Contains the "syncDir" flag. +**     nByte   -> Number of bytes of zBuf points to (file name). +** +** ASYNC_OPENEXCLUSIVE: +**     iOffset -> Value of "delflag". +**     nByte   -> Number of bytes of zBuf points to (file name). +** +** ASYNC_UNLOCK: +**     nByte   -> Argument to sqlite3OsUnlock(). +** +** +** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.  +** This space is sqlite3_malloc()d along with the AsyncWrite structure in a +** single blob, so is deleted when sqlite3_free() is called on the parent  +** structure. +*/ +struct AsyncWrite { +  AsyncFileData *pFileData;    /* File to write data to or sync */ +  int op;                      /* One of ASYNC_xxx etc. */ +  sqlite_int64 iOffset;        /* See above */ +  int nByte;          /* See above */ +  char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ +  AsyncWrite *pNext;  /* Next write operation (to any file) */ +}; + +/* +** An instance of this structure is created for each distinct open file  +** (i.e. if two handles are opened on the one file, only one of these +** structures is allocated) and stored in the async.aLock hash table. The +** keys for async.aLock are the full pathnames of the opened files. +** +** AsyncLock.pList points to the head of a linked list of AsyncFileLock +** structures, one for each handle currently open on the file. +** +** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is +** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is  +** false, variables AsyncLock.pFile and AsyncLock.eLock are never used.  +** Otherwise, pFile is a file handle opened on the file in question and  +** used to obtain the file-system locks required by database connections  +** within this process. +** +** See comments above the asyncLock() function for more details on  +** the implementation of database locking used by this backend. +*/ +struct AsyncLock { +  char *zFile; +  int nFile; +  sqlite3_file *pFile; +  int eLock; +  AsyncFileLock *pList; +  AsyncLock *pNext;           /* Next in linked list headed by async.pLock */ +}; + +/* +** An instance of the following structure is allocated along with each +** AsyncFileData structure (see AsyncFileData.lock), but is only used if the +** file was opened with the SQLITE_OPEN_MAIN_DB. +*/ +struct AsyncFileLock { +  int eLock;                /* Internally visible lock state (sqlite pov) */ +  int eAsyncLock;           /* Lock-state with write-queue unlock */ +  AsyncFileLock *pNext; +}; + +/*  +** The AsyncFile structure is a subclass of sqlite3_file used for  +** asynchronous IO.  +** +** All of the actual data for the structure is stored in the structure +** pointed to by AsyncFile.pData, which is allocated as part of the +** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the +** lifetime of the AsyncFile structure is ended by the caller after OsClose() +** is called, but the data in AsyncFileData may be required by the +** writer thread after that point. +*/ +struct AsyncFile { +  sqlite3_io_methods *pMethod; +  AsyncFileData *pData; +}; +struct AsyncFileData { +  char *zName;               /* Underlying OS filename - used for debugging */ +  int nName;                 /* Number of characters in zName */ +  sqlite3_file *pBaseRead;   /* Read handle to the underlying Os file */ +  sqlite3_file *pBaseWrite;  /* Write handle to the underlying Os file */ +  AsyncFileLock lock;        /* Lock state for this handle */ +  AsyncLock *pLock;          /* AsyncLock object for this file system entry */ +  AsyncWrite closeOp;        /* Preallocated close operation */ +}; + +/* +** Add an entry to the end of the global write-op list. pWrite should point  +** to an AsyncWrite structure allocated using sqlite3_malloc().  The writer +** thread will call sqlite3_free() to free the structure after the specified +** operation has been completed. +** +** Once an AsyncWrite structure has been added to the list, it becomes the +** property of the writer thread and must not be read or modified by the +** caller.   +*/ +static void addAsyncWrite(AsyncWrite *pWrite){ +  /* We must hold the queue mutex in order to modify the queue pointers */ +  if( pWrite->op!=ASYNC_UNLOCK ){ +    async_mutex_enter(ASYNC_MUTEX_QUEUE); +  } + +  /* Add the record to the end of the write-op queue */ +  assert( !pWrite->pNext ); +  if( async.pQueueLast ){ +    assert( async.pQueueFirst ); +    async.pQueueLast->pNext = pWrite; +  }else{ +    async.pQueueFirst = pWrite; +  } +  async.pQueueLast = pWrite; +  ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], +         pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); + +  if( pWrite->op==ASYNC_CLOSE ){ +    async.nFile--; +  } + +  /* The writer thread might have been idle because there was nothing +  ** on the write-op queue for it to do.  So wake it up. */ +  async_cond_signal(ASYNC_COND_QUEUE); + +  /* Drop the queue mutex */ +  if( pWrite->op!=ASYNC_UNLOCK ){ +    async_mutex_leave(ASYNC_MUTEX_QUEUE); +  } +} + +/* +** Increment async.nFile in a thread-safe manner. +*/ +static void incrOpenFileCount(void){ +  /* We must hold the queue mutex in order to modify async.nFile */ +  async_mutex_enter(ASYNC_MUTEX_QUEUE); +  if( async.nFile==0 ){ +    async.ioError = SQLITE_OK; +  } +  async.nFile++; +  async_mutex_leave(ASYNC_MUTEX_QUEUE); +} + +/* +** This is a utility function to allocate and populate a new AsyncWrite +** structure and insert it (via addAsyncWrite() ) into the global list. +*/ +static int addNewAsyncWrite( +  AsyncFileData *pFileData,  +  int op,  +  sqlite3_int64 iOffset,  +  int nByte, +  const char *zByte +){ +  AsyncWrite *p; +  if( op!=ASYNC_CLOSE && async.ioError ){ +    return async.ioError; +  } +  p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); +  if( !p ){ +    /* The upper layer does not expect operations like OsWrite() to +    ** return SQLITE_NOMEM. This is partly because under normal conditions +    ** SQLite is required to do rollback without calling malloc(). So +    ** if malloc() fails here, treat it as an I/O error. The above +    ** layer knows how to handle that. +    */ +    return SQLITE_IOERR; +  } +  p->op = op; +  p->iOffset = iOffset; +  p->nByte = nByte; +  p->pFileData = pFileData; +  p->pNext = 0; +  if( zByte ){ +    p->zBuf = (char *)&p[1]; +    memcpy(p->zBuf, zByte, nByte); +  }else{ +    p->zBuf = 0; +  } +  addAsyncWrite(p); +  return SQLITE_OK; +} + +/* +** Close the file. This just adds an entry to the write-op list, the file is +** not actually closed. +*/ +static int asyncClose(sqlite3_file *pFile){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; + +  /* Unlock the file, if it is locked */ +  async_mutex_enter(ASYNC_MUTEX_LOCK); +  p->lock.eLock = 0; +  async_mutex_leave(ASYNC_MUTEX_LOCK); + +  addAsyncWrite(&p->closeOp); +  return SQLITE_OK; +} + +/* +** Implementation of sqlite3OsWrite() for asynchronous files. Instead of  +** writing to the underlying file, this function adds an entry to the end of +** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be +** returned. +*/ +static int asyncWrite( +  sqlite3_file *pFile,  +  const void *pBuf,  +  int amt,  +  sqlite3_int64 iOff +){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); +} + +/* +** Read data from the file. First we read from the filesystem, then adjust  +** the contents of the buffer based on ASYNC_WRITE operations in the  +** write-op queue. +** +** This method holds the mutex from start to finish. +*/ +static int asyncRead( +  sqlite3_file *pFile,  +  void *zOut,  +  int iAmt,  +  sqlite3_int64 iOffset +){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  int rc = SQLITE_OK; +  sqlite3_int64 filesize = 0; +  sqlite3_file *pBase = p->pBaseRead; +  sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; + +  /* Grab the write queue mutex for the duration of the call */ +  async_mutex_enter(ASYNC_MUTEX_QUEUE); + +  /* If an I/O error has previously occurred in this virtual file  +  ** system, then all subsequent operations fail. +  */ +  if( async.ioError!=SQLITE_OK ){ +    rc = async.ioError; +    goto asyncread_out; +  } + +  if( pBase->pMethods ){ +    sqlite3_int64 nRead; +    rc = pBase->pMethods->xFileSize(pBase, &filesize); +    if( rc!=SQLITE_OK ){ +      goto asyncread_out; +    } +    nRead = MIN(filesize - iOffset, iAmt64); +    if( nRead>0 ){ +      rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); +      ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); +    } +  } + +  if( rc==SQLITE_OK ){ +    AsyncWrite *pWrite; +    char *zName = p->zName; + +    for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ +      if( pWrite->op==ASYNC_WRITE && ( +        (pWrite->pFileData==p) || +        (zName && pWrite->pFileData->zName==zName) +      )){ +        sqlite3_int64 nCopy; +        sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; + +        /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from +        ** which data should be copied. Set iBeginOut to the offset within +        ** the output buffer to which data should be copied. If either of +        ** these offsets is a negative number, set them to 0. +        */ +        sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); +        sqlite3_int64 iBeginIn = -iBeginOut; +        if( iBeginIn<0 ) iBeginIn = 0; +        if( iBeginOut<0 ) iBeginOut = 0; + +        filesize = MAX(filesize, pWrite->iOffset+nByte64); + +        nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); +        if( nCopy>0 ){ +          memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy); +          ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); +        } +      } +    } +  } + +asyncread_out: +  async_mutex_leave(ASYNC_MUTEX_QUEUE); +  if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ +    rc = SQLITE_IOERR_SHORT_READ; +  } +  return rc; +} + +/* +** Truncate the file to nByte bytes in length. This just adds an entry to  +** the write-op list, no IO actually takes place. +*/ +static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); +} + +/* +** Sync the file. This just adds an entry to the write-op list, the  +** sync() is done later by sqlite3_async_flush(). +*/ +static int asyncSync(sqlite3_file *pFile, int flags){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); +} + +/* +** Read the size of the file. First we read the size of the file system  +** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations  +** currently in the write-op list.  +** +** This method holds the mutex from start to finish. +*/ +int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  int rc = SQLITE_OK; +  sqlite3_int64 s = 0; +  sqlite3_file *pBase; + +  async_mutex_enter(ASYNC_MUTEX_QUEUE); + +  /* Read the filesystem size from the base file. If pMethods is NULL, this +  ** means the file hasn't been opened yet. In this case all relevant data  +  ** must be in the write-op queue anyway, so we can omit reading from the +  ** file-system. +  */ +  pBase = p->pBaseRead; +  if( pBase->pMethods ){ +    rc = pBase->pMethods->xFileSize(pBase, &s); +  } + +  if( rc==SQLITE_OK ){ +    AsyncWrite *pWrite; +    for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ +      if( pWrite->op==ASYNC_DELETE  +       && p->zName  +       && strcmp(p->zName, pWrite->zBuf)==0  +      ){ +        s = 0; +      }else if( pWrite->pFileData && ( +          (pWrite->pFileData==p)  +       || (p->zName && pWrite->pFileData->zName==p->zName)  +      )){ +        switch( pWrite->op ){ +          case ASYNC_WRITE: +            s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); +            break; +          case ASYNC_TRUNCATE: +            s = MIN(s, pWrite->iOffset); +            break; +        } +      } +    } +    *piSize = s; +  } +  async_mutex_leave(ASYNC_MUTEX_QUEUE); +  return rc; +} + +/* +** Lock or unlock the actual file-system entry. +*/ +static int getFileLock(AsyncLock *pLock){ +  int rc = SQLITE_OK; +  AsyncFileLock *pIter; +  int eRequired = 0; + +  if( pLock->pFile ){ +    for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ +      assert(pIter->eAsyncLock>=pIter->eLock); +      if( pIter->eAsyncLock>eRequired ){ +        eRequired = pIter->eAsyncLock; +        assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); +      } +    } + +    if( eRequired>pLock->eLock ){ +      rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); +      if( rc==SQLITE_OK ){ +        pLock->eLock = eRequired; +      } +    } +    else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ +      rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); +      if( rc==SQLITE_OK ){ +        pLock->eLock = eRequired; +      } +    } +  } + +  return rc; +} + +/* +** Return the AsyncLock structure from the global async.pLock list  +** associated with the file-system entry identified by path zName  +** (a string of nName bytes). If no such structure exists, return 0. +*/ +static AsyncLock *findLock(const char *zName, int nName){ +  AsyncLock *p = async.pLock; +  while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ +    p = p->pNext; +  } +  return p; +} + +/* +** The following two methods - asyncLock() and asyncUnlock() - are used +** to obtain and release locks on database files opened with the +** asynchronous backend. +*/ +static int asyncLock(sqlite3_file *pFile, int eLock){ +  int rc = SQLITE_OK; +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; + +  if( p->zName ){ +    async_mutex_enter(ASYNC_MUTEX_LOCK); +    if( p->lock.eLock<eLock ){ +      AsyncLock *pLock = p->pLock; +      AsyncFileLock *pIter; +      assert(pLock && pLock->pList); +      for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ +        if( pIter!=&p->lock && ( +          (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || +          (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || +          (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || +          (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) +        )){ +          rc = SQLITE_BUSY; +        } +      } +      if( rc==SQLITE_OK ){ +        p->lock.eLock = eLock; +        p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); +      } +      assert(p->lock.eAsyncLock>=p->lock.eLock); +      if( rc==SQLITE_OK ){ +        rc = getFileLock(pLock); +      } +    } +    async_mutex_leave(ASYNC_MUTEX_LOCK); +  } + +  ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); +  return rc; +} +static int asyncUnlock(sqlite3_file *pFile, int eLock){ +  int rc = SQLITE_OK; +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; +  if( p->zName ){ +    AsyncFileLock *pLock = &p->lock; +    async_mutex_enter(ASYNC_MUTEX_QUEUE); +    async_mutex_enter(ASYNC_MUTEX_LOCK); +    pLock->eLock = MIN(pLock->eLock, eLock); +    rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); +    async_mutex_leave(ASYNC_MUTEX_LOCK); +    async_mutex_leave(ASYNC_MUTEX_QUEUE); +  } +  return rc; +} + +/* +** This function is called when the pager layer first opens a database file +** and is checking for a hot-journal. +*/ +static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ +  int ret = 0; +  AsyncFileLock *pIter; +  AsyncFileData *p = ((AsyncFile *)pFile)->pData; + +  async_mutex_enter(ASYNC_MUTEX_LOCK); +  for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ +    if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ +      ret = 1; +      break; +    } +  } +  async_mutex_leave(ASYNC_MUTEX_LOCK); + +  ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); +  *pResOut = ret; +  return SQLITE_OK; +} + +/*  +** sqlite3_file_control() implementation. +*/ +static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ +  switch( op ){ +    case SQLITE_FCNTL_LOCKSTATE: { +      async_mutex_enter(ASYNC_MUTEX_LOCK); +      *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; +      async_mutex_leave(ASYNC_MUTEX_LOCK); +      return SQLITE_OK; +    } +  } +  return SQLITE_NOTFOUND; +} + +/*  +** Return the device characteristics and sector-size of the device. It +** is tricky to implement these correctly, as this backend might  +** not have an open file handle at this point. +*/ +static int asyncSectorSize(sqlite3_file *pFile){ +  UNUSED_PARAMETER(pFile); +  return 512; +} +static int asyncDeviceCharacteristics(sqlite3_file *pFile){ +  UNUSED_PARAMETER(pFile); +  return 0; +} + +static int unlinkAsyncFile(AsyncFileData *pData){ +  AsyncFileLock **ppIter; +  int rc = SQLITE_OK; + +  if( pData->zName ){ +    AsyncLock *pLock = pData->pLock; +    for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ +      if( (*ppIter)==&pData->lock ){ +        *ppIter = pData->lock.pNext; +        break; +      } +    } +    if( !pLock->pList ){ +      AsyncLock **pp; +      if( pLock->pFile ){ +        pLock->pFile->pMethods->xClose(pLock->pFile); +      } +      for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); +      *pp = pLock->pNext; +      sqlite3_free(pLock); +    }else{ +      rc = getFileLock(pLock); +    } +  } + +  return rc; +} + +/* +** The parameter passed to this function is a copy of a 'flags' parameter +** passed to this modules xOpen() method. This function returns true +** if the file should be opened asynchronously, or false if it should +** be opened immediately. +** +** If the file is to be opened asynchronously, then asyncOpen() will add +** an entry to the event queue and the file will not actually be opened +** until the event is processed. Otherwise, the file is opened directly +** by the caller. +*/ +static int doAsynchronousOpen(int flags){ +  return (flags&SQLITE_OPEN_CREATE) && ( +      (flags&SQLITE_OPEN_MAIN_JOURNAL) || +      (flags&SQLITE_OPEN_TEMP_JOURNAL) || +      (flags&SQLITE_OPEN_DELETEONCLOSE) +  ); +} + +/* +** Open a file. +*/ +static int asyncOpen( +  sqlite3_vfs *pAsyncVfs, +  const char *zName, +  sqlite3_file *pFile, +  int flags, +  int *pOutFlags +){ +  static sqlite3_io_methods async_methods = { +    1,                               /* iVersion */ +    asyncClose,                      /* xClose */ +    asyncRead,                       /* xRead */ +    asyncWrite,                      /* xWrite */ +    asyncTruncate,                   /* xTruncate */ +    asyncSync,                       /* xSync */ +    asyncFileSize,                   /* xFileSize */ +    asyncLock,                       /* xLock */ +    asyncUnlock,                     /* xUnlock */ +    asyncCheckReservedLock,          /* xCheckReservedLock */ +    asyncFileControl,                /* xFileControl */ +    asyncSectorSize,                 /* xSectorSize */ +    asyncDeviceCharacteristics       /* xDeviceCharacteristics */ +  }; + +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  AsyncFile *p = (AsyncFile *)pFile; +  int nName = 0; +  int rc = SQLITE_OK; +  int nByte; +  AsyncFileData *pData; +  AsyncLock *pLock = 0; +  char *z; +  int isAsyncOpen = doAsynchronousOpen(flags); + +  /* If zName is NULL, then the upper layer is requesting an anonymous file. +  ** Otherwise, allocate enough space to make a copy of the file name (along +  ** with the second nul-terminator byte required by xOpen). +  */ +  if( zName ){ +    nName = (int)strlen(zName); +  } + +  nByte = ( +    sizeof(AsyncFileData) +        /* AsyncFileData structure */ +    2 * pVfs->szOsFile +           /* AsyncFileData.pBaseRead and pBaseWrite */ +    nName + 2                      /* AsyncFileData.zName */ +  );  +  z = sqlite3_malloc(nByte); +  if( !z ){ +    return SQLITE_NOMEM; +  } +  memset(z, 0, nByte); +  pData = (AsyncFileData*)z; +  z += sizeof(pData[0]); +  pData->pBaseRead = (sqlite3_file*)z; +  z += pVfs->szOsFile; +  pData->pBaseWrite = (sqlite3_file*)z; +  pData->closeOp.pFileData = pData; +  pData->closeOp.op = ASYNC_CLOSE; + +  if( zName ){ +    z += pVfs->szOsFile; +    pData->zName = z; +    pData->nName = nName; +    memcpy(pData->zName, zName, nName); +  } + +  if( !isAsyncOpen ){ +    int flagsout; +    rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); +    if( rc==SQLITE_OK  +     && (flagsout&SQLITE_OPEN_READWRITE)  +     && (flags&SQLITE_OPEN_EXCLUSIVE)==0 +    ){ +      rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); +    } +    if( pOutFlags ){ +      *pOutFlags = flagsout; +    } +  } + +  async_mutex_enter(ASYNC_MUTEX_LOCK); + +  if( zName && rc==SQLITE_OK ){ +    pLock = findLock(pData->zName, pData->nName); +    if( !pLock ){ +      int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;  +      pLock = (AsyncLock *)sqlite3_malloc(nByte); +      if( pLock ){ +        memset(pLock, 0, nByte); +        if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ +          pLock->pFile = (sqlite3_file *)&pLock[1]; +          rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); +          if( rc!=SQLITE_OK ){ +            sqlite3_free(pLock); +            pLock = 0; +          } +        } +        if( pLock ){ +          pLock->nFile = pData->nName; +          pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; +          memcpy(pLock->zFile, pData->zName, pLock->nFile); +          pLock->pNext = async.pLock; +          async.pLock = pLock; +        } +      }else{ +        rc = SQLITE_NOMEM; +      } +    } +  } + +  if( rc==SQLITE_OK ){ +    p->pMethod = &async_methods; +    p->pData = pData; + +    /* Link AsyncFileData.lock into the linked list of  +    ** AsyncFileLock structures for this file. +    */ +    if( zName ){ +      pData->lock.pNext = pLock->pList; +      pLock->pList = &pData->lock; +      pData->zName = pLock->zFile; +    } +  }else{ +    if( pData->pBaseRead->pMethods ){ +      pData->pBaseRead->pMethods->xClose(pData->pBaseRead); +    } +    if( pData->pBaseWrite->pMethods ){ +      pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); +    } +    sqlite3_free(pData); +  } + +  async_mutex_leave(ASYNC_MUTEX_LOCK); + +  if( rc==SQLITE_OK ){ +    pData->pLock = pLock; +  } + +  if( rc==SQLITE_OK && isAsyncOpen ){ +    rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); +    if( rc==SQLITE_OK ){ +      if( pOutFlags ) *pOutFlags = flags; +    }else{ +      async_mutex_enter(ASYNC_MUTEX_LOCK); +      unlinkAsyncFile(pData); +      async_mutex_leave(ASYNC_MUTEX_LOCK); +      sqlite3_free(pData); +    } +  } +  if( rc!=SQLITE_OK ){ +    p->pMethod = 0; +  }else{ +    incrOpenFileCount(); +  } + +  return rc; +} + +/* +** Implementation of sqlite3OsDelete. Add an entry to the end of the  +** write-op queue to perform the delete. +*/ +static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ +  UNUSED_PARAMETER(pAsyncVfs); +  return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); +} + +/* +** Implementation of sqlite3OsAccess. This method holds the mutex from +** start to finish. +*/ +static int asyncAccess( +  sqlite3_vfs *pAsyncVfs,  +  const char *zName,  +  int flags, +  int *pResOut +){ +  int rc; +  int ret; +  AsyncWrite *p; +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; + +  assert(flags==SQLITE_ACCESS_READWRITE  +      || flags==SQLITE_ACCESS_READ  +      || flags==SQLITE_ACCESS_EXISTS  +  ); + +  async_mutex_enter(ASYNC_MUTEX_QUEUE); +  rc = pVfs->xAccess(pVfs, zName, flags, &ret); +  if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ +    for(p=async.pQueueFirst; p; p = p->pNext){ +      if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ +        ret = 0; +      }else if( p->op==ASYNC_OPENEXCLUSIVE  +             && p->pFileData->zName +             && 0==strcmp(p->pFileData->zName, zName)  +      ){ +        ret = 1; +      } +    } +  } +  ASYNC_TRACE(("ACCESS(%s): %s = %d\n",  +    flags==SQLITE_ACCESS_READWRITE?"read-write": +    flags==SQLITE_ACCESS_READ?"read":"exists" +    , zName, ret) +  ); +  async_mutex_leave(ASYNC_MUTEX_QUEUE); +  *pResOut = ret; +  return rc; +} + +/* +** Fill in zPathOut with the full path to the file identified by zPath. +*/ +static int asyncFullPathname( +  sqlite3_vfs *pAsyncVfs,  +  const char *zPath,  +  int nPathOut, +  char *zPathOut +){ +  int rc; +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); + +  /* Because of the way intra-process file locking works, this backend +  ** needs to return a canonical path. The following block assumes the +  ** file-system uses unix style paths.  +  */ +  if( rc==SQLITE_OK ){ +    int i, j; +    char *z = zPathOut; +    int n = (int)strlen(z); +    while( n>1 && z[n-1]=='/' ){ n--; } +    for(i=j=0; i<n; i++){ +      if( z[i]=='/' ){ +        if( z[i+1]=='/' ) continue; +        if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ +          i += 1; +          continue; +        } +        if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ +          while( j>0 && z[j-1]!='/' ){ j--; } +          if( j>0 ){ j--; } +          i += 2; +          continue; +        } +      } +      z[j++] = z[i]; +    } +    z[j] = 0; +  } + +  return rc; +} +static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  return pVfs->xDlOpen(pVfs, zPath); +} +static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  pVfs->xDlError(pVfs, nByte, zErrMsg); +} +static void (*asyncDlSym( +  sqlite3_vfs *pAsyncVfs,  +  void *pHandle,  +  const char *zSymbol +))(void){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  return pVfs->xDlSym(pVfs, pHandle, zSymbol); +} +static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  pVfs->xDlClose(pVfs, pHandle); +} +static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  return pVfs->xRandomness(pVfs, nByte, zBufOut); +} +static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  return pVfs->xSleep(pVfs, nMicro); +} +static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; +  return pVfs->xCurrentTime(pVfs, pTimeOut); +} + +static sqlite3_vfs async_vfs = { +  1,                    /* iVersion */ +  sizeof(AsyncFile),    /* szOsFile */ +  0,                    /* mxPathname */ +  0,                    /* pNext */ +  SQLITEASYNC_VFSNAME,  /* zName */ +  0,                    /* pAppData */ +  asyncOpen,            /* xOpen */ +  asyncDelete,          /* xDelete */ +  asyncAccess,          /* xAccess */ +  asyncFullPathname,    /* xFullPathname */ +  asyncDlOpen,          /* xDlOpen */ +  asyncDlError,         /* xDlError */ +  asyncDlSym,           /* xDlSym */ +  asyncDlClose,         /* xDlClose */ +  asyncRandomness,      /* xDlError */ +  asyncSleep,           /* xDlSym */ +  asyncCurrentTime      /* xDlClose */ +}; + +/*  +** This procedure runs in a separate thread, reading messages off of the +** write queue and processing them one by one.   +** +** If async.writerHaltNow is true, then this procedure exits +** after processing a single message. +** +** If async.writerHaltWhenIdle is true, then this procedure exits when +** the write queue is empty. +** +** If both of the above variables are false, this procedure runs +** indefinately, waiting for operations to be added to the write queue +** and processing them in the order in which they arrive. +** +** An artifical delay of async.ioDelay milliseconds is inserted before +** each write operation in order to simulate the effect of a slow disk. +** +** Only one instance of this procedure may be running at a time. +*/ +static void asyncWriterThread(void){ +  sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); +  AsyncWrite *p = 0; +  int rc = SQLITE_OK; +  int holdingMutex = 0; + +  async_mutex_enter(ASYNC_MUTEX_WRITER); + +  while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ +    int doNotFree = 0; +    sqlite3_file *pBase = 0; + +    if( !holdingMutex ){ +      async_mutex_enter(ASYNC_MUTEX_QUEUE); +    } +    while( (p = async.pQueueFirst)==0 ){ +      if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ +        async_mutex_leave(ASYNC_MUTEX_QUEUE); +        break; +      }else{ +        ASYNC_TRACE(("IDLE\n")); +        async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); +        ASYNC_TRACE(("WAKEUP\n")); +      } +    } +    if( p==0 ) break; +    holdingMutex = 1; + +    /* Right now this thread is holding the mutex on the write-op queue. +    ** Variable 'p' points to the first entry in the write-op queue. In +    ** the general case, we hold on to the mutex for the entire body of +    ** the loop.  +    ** +    ** However in the cases enumerated below, we relinquish the mutex, +    ** perform the IO, and then re-request the mutex before removing 'p' from +    ** the head of the write-op queue. The idea is to increase concurrency with +    ** sqlite threads. +    ** +    **     * An ASYNC_CLOSE operation. +    **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish  +    **       the mutex, call the underlying xOpenExclusive() function, then +    **       re-aquire the mutex before seting the AsyncFile.pBaseRead  +    **       variable. +    **     * ASYNC_SYNC and ASYNC_WRITE operations, if  +    **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two +    **       file-handles are open for the particular file being "synced". +    */ +    if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ +      p->op = ASYNC_NOOP; +    } +    if( p->pFileData ){ +      pBase = p->pFileData->pBaseWrite; +      if(  +        p->op==ASYNC_CLOSE ||  +        p->op==ASYNC_OPENEXCLUSIVE || +        (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )  +      ){ +        async_mutex_leave(ASYNC_MUTEX_QUEUE); +        holdingMutex = 0; +      } +      if( !pBase->pMethods ){ +        pBase = p->pFileData->pBaseRead; +      } +    } + +    switch( p->op ){ +      case ASYNC_NOOP: +        break; + +      case ASYNC_WRITE: +        assert( pBase ); +        ASYNC_TRACE(("WRITE %s %d bytes at %d\n", +                p->pFileData->zName, p->nByte, p->iOffset)); +        rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); +        break; + +      case ASYNC_SYNC: +        assert( pBase ); +        ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); +        rc = pBase->pMethods->xSync(pBase, p->nByte); +        break; + +      case ASYNC_TRUNCATE: +        assert( pBase ); +        ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",  +                p->pFileData->zName, p->iOffset)); +        rc = pBase->pMethods->xTruncate(pBase, p->iOffset); +        break; + +      case ASYNC_CLOSE: { +        AsyncFileData *pData = p->pFileData; +        ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); +        if( pData->pBaseWrite->pMethods ){ +          pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); +        } +        if( pData->pBaseRead->pMethods ){ +          pData->pBaseRead->pMethods->xClose(pData->pBaseRead); +        } + +        /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock  +        ** structures for this file. Obtain the async.lockMutex mutex  +        ** before doing so. +        */ +        async_mutex_enter(ASYNC_MUTEX_LOCK); +        rc = unlinkAsyncFile(pData); +        async_mutex_leave(ASYNC_MUTEX_LOCK); + +        if( !holdingMutex ){ +          async_mutex_enter(ASYNC_MUTEX_QUEUE); +          holdingMutex = 1; +        } +        assert_mutex_is_held(ASYNC_MUTEX_QUEUE); +        async.pQueueFirst = p->pNext; +        sqlite3_free(pData); +        doNotFree = 1; +        break; +      } + +      case ASYNC_UNLOCK: { +        AsyncWrite *pIter; +        AsyncFileData *pData = p->pFileData; +        int eLock = p->nByte; + +        /* When a file is locked by SQLite using the async backend, it is  +        ** locked within the 'real' file-system synchronously. When it is +        ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to +        ** unlock the file asynchronously. The design of the async backend +        ** requires that the 'real' file-system file be locked from the +        ** time that SQLite first locks it (and probably reads from it) +        ** until all asynchronous write events that were scheduled before +        ** SQLite unlocked the file have been processed. +        ** +        ** This is more complex if SQLite locks and unlocks the file multiple +        ** times in quick succession. For example, if SQLite does:  +        **  +        **   lock, write, unlock, lock, write, unlock +        ** +        ** Each "lock" operation locks the file immediately. Each "write"  +        ** and "unlock" operation adds an event to the event queue. If the +        ** second "lock" operation is performed before the first "unlock" +        ** operation has been processed asynchronously, then the first +        ** "unlock" cannot be safely processed as is, since this would mean +        ** the file was unlocked when the second "write" operation is +        ** processed. To work around this, when processing an ASYNC_UNLOCK +        ** operation, SQLite: +        ** +        **   1) Unlocks the file to the minimum of the argument passed to +        **      the xUnlock() call and the current lock from SQLite's point +        **      of view, and +        ** +        **   2) Only unlocks the file at all if this event is the last +        **      ASYNC_UNLOCK event on this file in the write-queue. +        */  +        assert( holdingMutex==1 ); +        assert( async.pQueueFirst==p ); +        for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ +          if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; +        } +        if( !pIter ){ +          async_mutex_enter(ASYNC_MUTEX_LOCK); +          pData->lock.eAsyncLock = MIN( +              pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) +          ); +          assert(pData->lock.eAsyncLock>=pData->lock.eLock); +          rc = getFileLock(pData->pLock); +          async_mutex_leave(ASYNC_MUTEX_LOCK); +        } +        break; +      } + +      case ASYNC_DELETE: +        ASYNC_TRACE(("DELETE %s\n", p->zBuf)); +        rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); +        break; + +      case ASYNC_OPENEXCLUSIVE: { +        int flags = (int)p->iOffset; +        AsyncFileData *pData = p->pFileData; +        ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); +        assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); +        rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); +        assert( holdingMutex==0 ); +        async_mutex_enter(ASYNC_MUTEX_QUEUE); +        holdingMutex = 1; +        break; +      } + +      default: assert(!"Illegal value for AsyncWrite.op"); +    } + +    /* If we didn't hang on to the mutex during the IO op, obtain it now +    ** so that the AsyncWrite structure can be safely removed from the  +    ** global write-op queue. +    */ +    if( !holdingMutex ){ +      async_mutex_enter(ASYNC_MUTEX_QUEUE); +      holdingMutex = 1; +    } +    /* ASYNC_TRACE(("UNLINK %p\n", p)); */ +    if( p==async.pQueueLast ){ +      async.pQueueLast = 0; +    } +    if( !doNotFree ){ +      assert_mutex_is_held(ASYNC_MUTEX_QUEUE); +      async.pQueueFirst = p->pNext; +      sqlite3_free(p); +    } +    assert( holdingMutex ); + +    /* An IO error has occurred. We cannot report the error back to the +    ** connection that requested the I/O since the error happened  +    ** asynchronously.  The connection has already moved on.  There  +    ** really is nobody to report the error to. +    ** +    ** The file for which the error occurred may have been a database or +    ** journal file. Regardless, none of the currently queued operations +    ** associated with the same database should now be performed. Nor should +    ** any subsequently requested IO on either a database or journal file  +    ** handle for the same database be accepted until the main database +    ** file handle has been closed and reopened. +    ** +    ** Furthermore, no further IO should be queued or performed on any file +    ** handle associated with a database that may have been part of a  +    ** multi-file transaction that included the database associated with  +    ** the IO error (i.e. a database ATTACHed to the same handle at some  +    ** point in time). +    */ +    if( rc!=SQLITE_OK ){ +      async.ioError = rc; +    } + +    if( async.ioError && !async.pQueueFirst ){ +      async_mutex_enter(ASYNC_MUTEX_LOCK); +      if( 0==async.pLock ){ +        async.ioError = SQLITE_OK; +      } +      async_mutex_leave(ASYNC_MUTEX_LOCK); +    } + +    /* Drop the queue mutex before continuing to the next write operation +    ** in order to give other threads a chance to work with the write queue. +    */ +    if( !async.pQueueFirst || !async.ioError ){ +      async_mutex_leave(ASYNC_MUTEX_QUEUE); +      holdingMutex = 0; +      if( async.ioDelay>0 ){ +        pVfs->xSleep(pVfs, async.ioDelay*1000); +      }else{ +        async_sched_yield(); +      } +    } +  } +   +  async_mutex_leave(ASYNC_MUTEX_WRITER); +  return; +} + +/* +** Install the asynchronous VFS. +*/  +int sqlite3async_initialize(const char *zParent, int isDefault){ +  int rc = SQLITE_OK; +  if( async_vfs.pAppData==0 ){ +    sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); +    if( !pParent || async_os_initialize() ){ +      rc = SQLITE_ERROR; +    }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ +      async_os_shutdown(); +    }else{ +      async_vfs.pAppData = (void *)pParent; +      async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; +    } +  } +  return rc; +} + +/* +** Uninstall the asynchronous VFS. +*/ +void sqlite3async_shutdown(void){ +  if( async_vfs.pAppData ){ +    async_os_shutdown(); +    sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); +    async_vfs.pAppData = 0; +  } +} + +/* +** Process events on the write-queue. +*/ +void sqlite3async_run(void){ +  asyncWriterThread(); +} + +/* +** Control/configure the asynchronous IO system. +*/ +int sqlite3async_control(int op, ...){ +  va_list ap; +  va_start(ap, op); +  switch( op ){ +    case SQLITEASYNC_HALT: { +      int eWhen = va_arg(ap, int); +      if( eWhen!=SQLITEASYNC_HALT_NEVER +       && eWhen!=SQLITEASYNC_HALT_NOW +       && eWhen!=SQLITEASYNC_HALT_IDLE +      ){ +        return SQLITE_MISUSE; +      } +      async.eHalt = eWhen; +      async_mutex_enter(ASYNC_MUTEX_QUEUE); +      async_cond_signal(ASYNC_COND_QUEUE); +      async_mutex_leave(ASYNC_MUTEX_QUEUE); +      break; +    } + +    case SQLITEASYNC_DELAY: { +      int iDelay = va_arg(ap, int); +      if( iDelay<0 ){ +        return SQLITE_MISUSE; +      } +      async.ioDelay = iDelay; +      break; +    } + +    case SQLITEASYNC_LOCKFILES: { +      int bLock = va_arg(ap, int); +      async_mutex_enter(ASYNC_MUTEX_QUEUE); +      if( async.nFile || async.pQueueFirst ){ +        async_mutex_leave(ASYNC_MUTEX_QUEUE); +        return SQLITE_MISUSE; +      } +      async.bLockFiles = bLock; +      async_mutex_leave(ASYNC_MUTEX_QUEUE); +      break; +    } +       +    case SQLITEASYNC_GET_HALT: { +      int *peWhen = va_arg(ap, int *); +      *peWhen = async.eHalt; +      break; +    } +    case SQLITEASYNC_GET_DELAY: { +      int *piDelay = va_arg(ap, int *); +      *piDelay = async.ioDelay; +      break; +    } +    case SQLITEASYNC_GET_LOCKFILES: { +      int *piDelay = va_arg(ap, int *); +      *piDelay = async.bLockFiles; +      break; +    } + +    default: +      return SQLITE_ERROR; +  } +  return SQLITE_OK; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ + diff --git a/3rdParty/SQLiteAsync/sqlite3async.h b/3rdParty/SQLiteAsync/sqlite3async.h new file mode 100644 index 0000000..143cdc7 --- /dev/null +++ b/3rdParty/SQLiteAsync/sqlite3async.h @@ -0,0 +1,223 @@ + +#ifndef __SQLITEASYNC_H_ +#define __SQLITEASYNC_H_ 1 + +/* +** Make sure we can call this stuff from C++. +*/ +#ifdef __cplusplus +extern "C" { +#endif + +#define SQLITEASYNC_VFSNAME "sqlite3async" + +/* +** THREAD SAFETY NOTES: +** +** Of the four API functions in this file, the following are not threadsafe: +** +**   sqlite3async_initialize() +**   sqlite3async_shutdown() +** +** Care must be taken that neither of these functions is called while  +** another thread may be calling either any sqlite3async_XXX() function +** or an sqlite3_XXX() API function related to a database handle that +** is using the asynchronous IO VFS. +** +** These functions: +** +**   sqlite3async_run() +**   sqlite3async_control() +** +** are threadsafe. It is quite safe to call either of these functions even +** if another thread may also be calling one of them or an sqlite3_XXX() +** function related to a database handle that uses the asynchronous IO VFS. +*/ + +/* +** Initialize the asynchronous IO VFS and register it with SQLite using +** sqlite3_vfs_register(). If the asynchronous VFS is already initialized +** and registered, this function is a no-op. The asynchronous IO VFS +** is registered as "sqlite3async". +** +** The asynchronous IO VFS does not make operating system IO requests  +** directly. Instead, it uses an existing VFS implementation for all +** required file-system operations. If the first parameter to this function +** is NULL, then the current default VFS is used for IO. If it is not +** NULL, then it must be the name of an existing VFS. In other words, the +** first argument to this function is passed to sqlite3_vfs_find() to +** locate the VFS to use for all real IO operations. This VFS is known +** as the "parent VFS". +** +** If the second parameter to this function is non-zero, then the  +** asynchronous IO VFS is registered as the default VFS for all SQLite  +** database connections within the process. Otherwise, the asynchronous IO +** VFS is only used by connections opened using sqlite3_open_v2() that +** specifically request VFS "sqlite3async". +** +** If a parent VFS cannot be located, then SQLITE_ERROR is returned. +** In the unlikely event that operating system specific initialization +** fails (win32 systems create the required critical section and event  +** objects within this function), then SQLITE_ERROR is also returned. +** Finally, if the call to sqlite3_vfs_register() returns an error, then  +** the error code is returned to the user by this function. In all three +** of these cases, intialization has failed and the asynchronous IO VFS +** is not registered with SQLite. +** +** Otherwise, if no error occurs, SQLITE_OK is returned. +*/  +int sqlite3async_initialize(const char *zParent, int isDefault); + +/* +** This function unregisters the asynchronous IO VFS using  +** sqlite3_vfs_unregister(). +** +** On win32 platforms, this function also releases the small number of  +** critical section and event objects created by sqlite3async_initialize(). +*/  +void sqlite3async_shutdown(); + +/* +** This function may only be called when the asynchronous IO VFS is  +** installed (after a call to sqlite3async_initialize()). It processes +** zero or more queued write operations before returning. It is expected +** (but not required) that this function will be called by a different  +** thread than those threads that use SQLite. The "background thread" +** that performs IO. +** +** How many queued write operations are performed before returning  +** depends on the global setting configured by passing the SQLITEASYNC_HALT +** verb to sqlite3async_control() (see below for details). By default +** this function never returns - it processes all pending operations and  +** then blocks waiting for new ones. +** +** If multiple simultaneous calls are made to sqlite3async_run() from two +** or more threads, then the calls are serialized internally. +*/ +void sqlite3async_run(); + +/* +** This function may only be called when the asynchronous IO VFS is  +** installed (after a call to sqlite3async_initialize()). It is used  +** to query or configure various parameters that affect the operation  +** of the asynchronous IO VFS. At present there are three parameters  +** supported: +** +**   * The "halt" parameter, which configures the circumstances under +**     which the sqlite3async_run() parameter is configured. +** +**   * The "delay" parameter. Setting the delay parameter to a non-zero +**     value causes the sqlite3async_run() function to sleep for the +**     configured number of milliseconds between each queued write  +**     operation. +** +**   * The "lockfiles" parameter. This parameter determines whether or  +**     not the asynchronous IO VFS locks the database files it operates +**     on. Disabling file locking can improve throughput. +** +** This function is always passed two arguments. When setting the value +** of a parameter, the first argument must be one of SQLITEASYNC_HALT, +** SQLITEASYNC_DELAY or SQLITEASYNC_LOCKFILES. The second argument must +** be passed the new value for the parameter as type "int". +** +** When querying the current value of a paramter, the first argument must +** be one of SQLITEASYNC_GET_HALT, GET_DELAY or GET_LOCKFILES. The second  +** argument to this function must be of type (int *). The current value +** of the queried parameter is copied to the memory pointed to by the +** second argument. For example: +** +**   int eCurrentHalt; +**   int eNewHalt = SQLITEASYNC_HALT_IDLE; +** +**   sqlite3async_control(SQLITEASYNC_HALT, eNewHalt); +**   sqlite3async_control(SQLITEASYNC_GET_HALT, &eCurrentHalt); +**   assert( eNewHalt==eCurrentHalt ); +** +** See below for more detail on each configuration parameter. +** +** SQLITEASYNC_HALT: +** +**   This is used to set the value of the "halt" parameter. The second +**   argument must be one of the SQLITEASYNC_HALT_XXX symbols defined +**   below (either NEVER, IDLE and NOW). +** +**   If the parameter is set to NEVER, then calls to sqlite3async_run() +**   never return. This is the default setting. If the parameter is set +**   to IDLE, then calls to sqlite3async_run() return as soon as the +**   queue of pending write operations is empty. If the parameter is set +**   to NOW, then calls to sqlite3async_run() return as quickly as  +**   possible, without processing any pending write requests. +** +**   If an attempt is made to set this parameter to an integer value other +**   than SQLITEASYNC_HALT_NEVER, IDLE or NOW, then sqlite3async_control()  +**   returns SQLITE_MISUSE and the current value of the parameter is not  +**   modified. +** +**   Modifying the "halt" parameter affects calls to sqlite3async_run()  +**   made by other threads that are currently in progress. +** +** SQLITEASYNC_DELAY: +** +**   This is used to set the value of the "delay" parameter. If set to +**   a non-zero value, then after completing a pending write request, the +**   sqlite3async_run() function sleeps for the configured number of  +**   milliseconds. +** +**   If an attempt is made to set this parameter to a negative value, +**   sqlite3async_control() returns SQLITE_MISUSE and the current value +**   of the parameter is not modified. +** +**   Modifying the "delay" parameter affects calls to sqlite3async_run()  +**   made by other threads that are currently in progress. +** +** SQLITEASYNC_LOCKFILES: +** +**   This is used to set the value of the "lockfiles" parameter. This +**   parameter must be set to either 0 or 1. If set to 1, then the +**   asynchronous IO VFS uses the xLock() and xUnlock() methods of the +**   parent VFS to lock database files being read and/or written. If +**   the parameter is set to 0, then these locks are omitted. +** +**   This parameter may only be set when there are no open database +**   connections using the VFS and the queue of pending write requests +**   is empty. Attempting to set it when this is not true, or to set it  +**   to a value other than 0 or 1 causes sqlite3async_control() to return +**   SQLITE_MISUSE and the value of the parameter to remain unchanged. +** +**   If this parameter is set to zero, then it is only safe to access the +**   database via the asynchronous IO VFS from within a single process. If +**   while writing to the database via the asynchronous IO VFS the database +**   is also read or written from within another process, or via another +**   connection that does not use the asynchronous IO VFS within the same +**   process, the results are undefined (and may include crashes or database +**   corruption). +** +**   Alternatively, if this parameter is set to 1, then it is safe to access +**   the database from multiple connections within multiple processes using +**   either the asynchronous IO VFS or the parent VFS directly. +*/ +int sqlite3async_control(int op, ...); + +/* +** Values that can be used as the first argument to sqlite3async_control(). +*/ +#define SQLITEASYNC_HALT          1 +#define SQLITEASYNC_GET_HALT      2 +#define SQLITEASYNC_DELAY         3 +#define SQLITEASYNC_GET_DELAY     4 +#define SQLITEASYNC_LOCKFILES     5 +#define SQLITEASYNC_GET_LOCKFILES 6 + +/* +** If the first argument to sqlite3async_control() is SQLITEASYNC_HALT, +** the second argument should be one of the following. +*/ +#define SQLITEASYNC_HALT_NEVER 0       /* Never halt (default value) */ +#define SQLITEASYNC_HALT_NOW   1       /* Halt as soon as possible */ +#define SQLITEASYNC_HALT_IDLE  2       /* Halt when write-queue is empty */ + +#ifdef __cplusplus +}  /* End of the 'extern "C"' block */ +#endif +#endif        /* ifndef __SQLITEASYNC_H_ */ + | 
 Swift
 Swift